「ナゾの物質」ダークマターの正体がついに明らかに…?「最有力候補」を科学的検証とともに一挙解説!
138億年前、点にも満たない極小のエネルギーの塊からこの宇宙は誕生した。そこから物質、地球、生命が生まれ、私たちの存在に至る。しかし、ふと冷静になって考えると、誰も見たことがない「宇宙の起源」をどのように解明するというのか、という疑問がわかないだろうか? 【写真】いったい、どのようにこの世界はできたのか…「宇宙の起源」に迫る 本連載では、第一線の研究者たちが基礎から最先端までを徹底的に解説した『宇宙と物質の起源』より、宇宙の大いなる謎解きにご案内しよう。 *本記事は、高エネルギー加速器研究機構 素粒子原子核研究所・編『宇宙と物質の起源「見えない世界」を理解する』(ブルーバックス)を抜粋・再編集したものです。
どうやってダークマターを見つけるのか
先の記事で、理論的に予言されるダークマターの有力候補について、ちょっとだけご紹介しました。本記事では、それぞれについて詳しく説明してみたいと思います。 最も有力な候補と目されているのは、WIMPと呼ばれる未発見の素粒子です。「弱い相互作用をする重い粒子」という意味の英語の頭文字を取って、そうした性質をもつ粒子の総称として名付けられました。重さは、陽子の100倍(約100GeV)程度以上です。他の粒子との相互作用が弱すぎて散乱の頻度が低くて見つけられない粒子なのです。英語の単語wimp自体が弱虫という意味なので、名は体を表していますね。具体的な粒子としては、まだ仮説である超対称性理論に現れる光子、もしくは、Z粒子かヒッグス粒子の相棒の総称であるニュートラリーノが、WIMPの候補として注目されています。 ニュートラリーノの見つけ方は単純です。キセノン原子などの重い原子核を数トンも用意して、ニュートラリーノがぶつかってくるのを待つ方法が、最も有力とされています。キセノン原子の中の陽子や中性子との相互作用は弱いのですが、大量にキセノンを用意すれば、確率が上がって、直接検出できるという考え方です。しかし、これまでにニュートラリーノが確実に発見された、とする報告はありません。また、高エネルギー加速器研究機構(KEK)も参加するスイス・ジュネーブにある欧州合同原子核研究機構(CERN)の大型ハドロン衝突型加速器(LHC)での加速器実験でニュートラリーノがつくられると期待されていたのですが、見つかりませんでした。 その一方、宇宙観測を用いるアイデアもあります。銀河の中心など、ダークマターの密度が濃いところで、ダークマター同士がお互いに衝突して対消滅することが期待されています。対消滅した後、ニュートラリーノならば、光や電子、クォークなど見える粒子を対生成によりつくることが理論的に予想されています。そうした2次的につくられた見える粒子を検出し、間接的にWIMPを検出するのです。現在の理解では、質量が約100GeVよりずっと重いせいで、数も少なく衝突頻度が低いのではないかという解釈がなされています。今後、ターゲットの原子の量を多くする、もしくは、検出器の感度を高めるなど装置の改良を重ねて、将来的に検出されることが期待されています。