photo by gettyimages(現代ビジネス)
3つの辺が全部「ピタゴラス数」の直角三角形が見せる「驚きの事象」…斜辺にある頂点の1つを揃えて並べたら、なんと「円」が出てきた
【関連記事】
- 【画像】三平方の定理と、2つの2乗した数の和が成立する自然数の組み合わせを見る
- 【三平方の定理…続き】「フェルマーの最終定理」を、なんと「中学数学」で探究…座標にとったら「奇妙な形」が現れた
- 【三平方の定理…その1】中学で覚えた「ピタゴラス数」、じつは無限にある…なんと、「素数」がからむと一気に「数学史上〈超〉がつく超難題」になった
- なんと、端から数字を落としていっても「やっぱり素数」になった…学校では学べない「数学センス」は「身近な例から一般化するクセ」だった
- 差が2の素数「双子素数」…じつは数学上の未解決の難題だった「いくらでもあるのか」
- 新幹線の座席はなぜ、通路をはさんで「2列」と「3列」になっているのか? じつは「数学的な合理性」があった…!