複数のタスクを同時にできる人間の脳のすごさ。やがて生成AIを上回る技術革新が生まれる――
その後も、塚田の時空間学習則[iii]や、栗川知己の記憶を力学系の分岐構造とみなすような独創的な理論研究をはじめとして、多くの数理的な研究が進んだ。ダイナミックブレイン・グループ(塚田稔、藤井宏、奈良重俊、合原一幸と筆者)の脳ダイナミクス研究はアメリカのフリーマン・グループ[iv]とともに世界に先駆けて行われてきた。脳は心をどのように生み出すのか? 筆者自身もこの流れに多少は貢献したと思っている。今回ノーベル物理学賞の対象になったHNを批判的に見て、脳の神経回路網により近い非平衡神経回路網モデルによって、エピソード記憶やカントール・コーディング[v]の理論などをカオス遍歴などの数学的概念を作ることによって提案した。カオス遍歴とは、記憶が定着する過程を数理的モデルで示したものだ。記憶に到達する途中の状態が神経回路に一時的にとどまり、それが複数のニューロンの間をカオス的な状態で行き来しながら最終的に秩序ある記憶になるということ、脳は「カオス」を使って編集していることを示した。 日本の神経回路網理論はむろんこれにとどまらず、素晴らしい研究は紹介しきれないほど多くある。このような継続性の背景には、いわゆる二度目の人工知能研究冬の時代(1980年代)にもヒントンが研究を継続していたという個人的な粘りとは異なったものがある。上に挙げた甘利ら工学系の研究者と脳神経科学の伊藤正男、外山敬介ら医学系の研究者が共同して研究会を催せる仕組みを作ってきたことが日本の神経回路網研究が継続してきた大きな要因になっていると思われるのである。大きな賞の行方に一喜一憂することなく、正道を進むことが何より肝心である。 [i] パラメーター励振 振り子の糸の長さや重力加速度の周期的な変化により振幅が増大する現象。ブランコをこぐのはその一例で、振動に合せて足を屈伸して重心を上下することで振り子の長さを変化させてふれを大きくしている。 [ii] パラメトロン 真空管やトランジスタの使用量を大幅に削減してコンピュータを構成できるとして、1950年代半ば~60年頃、当時としては多数のパラメトロン式コンピュータが日本でつくられた。 [iii] 時空間学習則 脳の海馬では外界の時空間の出来事を文脈として一時的に記憶するため、時空間学習則が有効に働いているというもの。 [iv] フリーマン・グループ 脳科学者のウォルター・フリーマンが中心。膨大な数の脳細胞の集まりがいかにして心を作り上げるのか、複雑系理論をもとに脳全体を統合するメカニズムの理論を考えた。その理論に津田は数学的側面から貢献した。 [v] 脳の海馬におけるエピソード記憶の形成を数学のカントール集合をモデルに考えた数理モデル。
津田 一郎/文春新書