複数のタスクを同時にできる人間の脳のすごさ。やがて生成AIを上回る技術革新が生まれる――
なぜ脳は省エネで複数のタスクを同時にできるのか? 自然知能の研究へ向けて
しかし、将来を考えればさらに安価で低コストで持続可能な人工知能開発を行う必要がある。それは、まさに生物としての脳に学ぶことで自然知能の研究を促進することによって達成されることだろう。実際、生物進化によって機能分化を起こしてきた脳神経系はニューロン数約100億、結合数約100兆の大規模システムではあるが、超省エネシステムである。 すなわち、高々20ワット、一秒間に5カロリーしかエネルギーを消費しない。それにもかかわらず脳は多くのものを記憶し、思考・推論を行い、時には並行して複数の事を行い、意識と無意識をうまく使い分けながら様々な問題解決を行うことができる。この仕組みを解明できれば、現行の生成系AIにとって代わるさらなる技術革新が得られることは間違いない(A. Pitti, I. Tsuda, et al. “Doing more with less: principle of natural intelligence”, to be published in Roy. Soc. Phil. Trans. A)。 数学者のスティーヴン・スメイル(1966年度フィールズ賞受賞:数学にノーベル賞はない)は2000年に“21世紀に数学者が解決すべき18の問題”を提案した。18番目の問題は「自然知能と人工知能の限界を定めよ」という魅力的なものだ。この問題の意義は今こそ発揮されるのではないだろうか。
神経回路網研究に関する日本の先駆性
すでに述べたように神経回路網の研究は脳の仕組みを理論的に解明することを目的に行われてきた。ホップフィールドやヒントンの研究も最初はそういった動機があったかもしれないが、応用が進むにつれて脳研究からは離れていった。 我が国は、脳研究の理論的枠組みとしての神経回路網研究を南雲(なぐも)仁一、高橋秀俊、甘利俊一、中野馨、福島邦彦、永野俊、杉江昇、塚田稔らが主導して遅くとも1960年代から行っており、その後、川人(かわと)光男、乾(いぬい)敏郎、銅谷(どうや)賢治らを代表とする視覚情報処理、感覚運動連関の理論研究へと途切れることなく今日まで続いている。高橋秀俊のもとにいた後藤英一によるパラメーター励振(れいしん)[i]という振動子の共振現象を論理回路に利用する「パラメトロン[ii]」の研究を神経振動子を素子とする神経回路という意味で先駆とするならば、その系譜は1950年代にまで遡る。